Uranus, the Sideways Planet

Facts Worth Sharing

  • Uranus, the seventh planet from the sun, is a cyan-colored world tipped on its side boasting rings and 27 known moons.
  • Uranus-sized worlds are common around other stars, so studying the planet helps us understand other solar systems systems and whether or not ours is unique.
  • We aren’t sure where Uranus formed or where it got its water. Figuring this out would give us insight into our solar system’s early days, when life was getting started on Earth.

Why We Study Uranus

There’s no getting around it: for English speakers, Uranus is the butt of all planet jokes. But there’s much more to this world than potty humor. Like its cousin Neptune, Uranus has only been visited by one spacecraft. Yet most of the planets we’ve found around other stars are Uranus and Neptune-sized, so learning this mysterious world teaches us about other solar systems and whether our own is unique.

Uniquely among our planets, Uranus and the orbits of its rings and moons float through space sideways. How this happened isn’t known for sure. Another large world could have crashed into the planet long ago, or a larger, previous ring system could have caused Uranus to wobble and tip over. Figuring out what happened would give scientists important insights into how planets evolve.

Uranus’ atmosphere is mostly hydrogen and helium like Jupiter and Saturn, with traces of methane that absorb red light and give the planet its cyan appearance. Beneath the atmosphere is an exotic slush of partially frozen water, ammonia, and methane. For this reason we call Uranus an ice giant, even though the ice isn’t like anything you’d put in your drink: super-compressed ice can reach temperatures of thousands of degrees!

Uranus lies 20 times further from the sun than Earth. At this distance, the disk of gas and dust that formed our solar system 4.5 billion years ago was probably too thin to form Uranus. Like Neptune, Uranus was probably born closer to the sun before migrating outward. Piecing together what happened would tell us what the early solar system was like before life arose on Earth.

Uranus’ five largest moons in order of ascending size are Miranda, Ariel, Umbriel, Oberon, and Titania. The latter two may be warmed enough by gravitational tugs from Uranus and other moons to create liquid water beneath their surfaces. Investigating this possibility would help us learn about the possibilities for life far outside the habitable zone, the not-too-hot, not-too-cold region around stars where liquid can exist on planetary surfaces.

Uranus' changing seasons
Uranus' changing seasons Three seasons are shown in images of Uranus taken by the Hubble Space Telescope in 1995, 2007, and 2019.Image: NASA / ESA / P. Kenneth Seidelmann, Kathy Rages, and Amy Simon / Opal / Judy Schmidt

Uranus Facts

Average temperature: -195°C (-320°F) where atmospheric pressure equals sea level on Earth
Average distance from Sun: 2,873 million kilometers (1,785 million miles), or 19 times farther from the Sun than Earth
Diameter: 51,118 kilometers (31,763 miles), Uranus is 4 times wider than Earth
Volume: 68 trillion km3 (16 trillion mi3), Earth could fit inside Uranus 68 times
Gravity: 8.7 m/s², or 89% that of Earth’s
Solar day: 17 Earth hours
Solar year: 30,687 Earth days
Atmosphere: 83% hydrogen, 15% helium, 2% methane and other gases

How We Study Uranus

Like Neptune, only spacecraft has ever visited Uranus. Missions to the outer planets require long travel times, which typically means higher costs. The only spacecraft ever to visit Uranus was Voyager 2, which launched in 1977 and used a rare planetary alignment that only happens every 175 years to visit all 4 outer planets.

When Voyager 2 swung by Uranus in 1986, it discovered new moons and rings and measured the planet’s magnetic field. Because the moons’ orbits sat sideways compared to Voyager 2’s trajectory, the spacecraft only got a close look at Miranda, revealing a world scarred by grooves and divots and boasting what could be the tallest cliff in the solar system.

With no new Uranus missions planned, scientists rely on ground-based telescopes and the Hubble Space Telescope to monitor the planet. Hubble has tracked the planet’s changing seasons for years, while recent ground images have provided new insight into the planet’s weather patterns.

The current best hope for a return to Uranus comes through the planetary science decadal survey, a report authored every 10 years by the U.S. science community to help NASA set mission priorities. The 2013 to 2022 decadal survey recommended a Uranus orbiter and probe as a top priority behind Mars Sample Return and the Europa Clipper. With the two latter missions underway, the next decadal survey could pave the way for new Uranus exploration.

Voyager 2's best image of Miranda
Voyager 2's best image of Miranda Voyager 2's images of Miranda were the highest-resolution of any of Uranus' moons. Voyager 2 spent 17 minutes capturing numerous photos to make this high-resolution portrait.Image: NASA / JPL / Ted Stryk

How You Can Support Uranus Exploration

Planetary Society co-founder Carl Sagan once said that "when you’re in love, you want to tell the world." Missions to worlds like Uranus are dependent upon sustained public enthusiasm from people like you. You know your audience best; we've got tools to help.

Tell the World

Learn More

Ready to take your next steps as a space advocate? Become a member and find out how you can take action in your community and government.

Action Center

Whether it's advocating, teaching, inspiring, or learning, you can do something for space, right now. Let's get to work.

Uranus in Recent Articles, Newsletters, and Podcasts

Solar System History 101

How did our solar system come to be? Why are the planets, asteroids, comets, and other small worlds where they are now?

The Next 10 Years

Six scientists share the major planetary science discoveries of the past decade, and the questions that will drive the next 10 years of solar system exploration.

12 ... 15 >