Emily LakdawallaOct 09, 2014

What did Dawn learn at Vesta?

It's now been two years since Dawn wrapped up its work at the second-largest asteroid. There's no question that the Dawn mission changed our view of Vesta -- literally. Before we got there, this was our best understanding of Vesta, from Hubble:

3-D model of Vesta
3-D model of Vesta This simulated view of the second most massive asteroid, Vesta, was created from a topographic model developed from two dozen images captured by the Hubble Space Telescope in 1995. The most astonishing feature of the model was an impact crater at the south pole (bottom of this image), with a width 80 percent the width of Vesta itself.Image: Ben Zellner, Peter Thomas, and NASA

The Vesta phase of the Dawn mission lasted from May 3, 2011 to September 4, 2012. Thanks to Dawn's Framing Camera (and some stellar image processing work by Bjorn Jonsson), this is how we see Vesta now:

Vesta in natural color
Vesta in natural color Vesta is a colorful world; craters of a variety of ages make splashes of lighter and darker brown against its surface. This photo was processed from data acquired on July 24, 2011, from a distance of about 5200 kilometers, during the third "rotation characterization" observation by Dawn.Image: NASA / JPL / MPS / DLR / IDA / Björn Jónsson

What else did we get from the Vesta encounter besides great photos? I realized, as I sat down to write an article for Sky & Telescope previewing Dawn's upcoming Ceres encounter, that I didn't know the answer to that question. After getting lost in a pile of Vesta-related academic papers recently published in Icarus, I finally asked Dawn's project scientist and deputy principal investigator, Carol Raymond, for help in summarizing a few of the big things Dawn taught us.

The first major result of the Dawn mission, Carol told me, was confirmation of the big-picture description of Vesta. One of the goals of the Dawn mission was to test the hypothesis that three specific classes of meteorites were related to Vesta. These three types of meteorites -- howardites, eucrites, and diogenites, collectively known as HED meteorites -- have spectral properties that make them a close match to the spectral properties of Vesta as observed from Earth. For a thorough introduction to the HED meteorites and waht makes them special, check out this detailed HED resource at the Johnson Space Center's website.

When the Hubble Space Telescope images suggested that Vesta's entire south pole was one gigantic impact crater, that suggested a mechanism for delivering the HED meteorites to Earth: that huge impact blasted away a huge amount of Vesta's crust, possibly digging into its mantle. It's a tidy story, because the eucrites look like a planetary crust, while the diogenites look like a planetary mantle, and the howardites are a mix of the two. The presence of different crust-like and mantle-like material meant that Vesta had differentiated -- separated by density into onion-like layers of different composition. Differentiation is one of the things that separates planet-like bodies with active internal geology from inactive asteroid-like bodies.

Carol said that the elemental data (from Dawn's GRaND neutron spectrometer instrument) and the spectral data (from its Visual and Infrared spectrometer, VIR) have confirmed the HED connection. In particular, most of Vesta's surface looks like howardites, which are the type that's a mixture of the other two. That isn't surprising; the impact that created Vesta's south polar basin (actually two overlapping impacts) happened a very long time ago, and more recent impacts have dug into the surface and mixed material around. And gravity data have also confirmed the fact that Vesta is denser toward its center, which is consistent with the differentiation story. There isn't unequivocal evidence for a metallic core and a rocky mantle, but it's quite likely, and consistent with the compositional story.

It's nice when your observations match your predictions. But, as is so often the story with planetary science, things get more interesting as you zoom into a planet and observe its features in more detail. The Dawn mission to Vesta had several distinct phases, conducted at different altitudes:

PhaseStart dateAltitude (km, approx)
Vesta approachMay 3, 20111.2 million-3100
Vesta surveyAug 11, 20112735
Transfer to High Altitude Mapping OrbitAug 31, 20112735-685
High Altitude Mapping OrbitSep 29, 2011685
Transfer to Low Altitude Mapping OrbitNov 2, 2011685-210
Low Altitude Mapping OrbitDec 12, 2011210
Transfer to High Altitude Mapping Orbit 2May 1, 2012210-685
High Altitude Mapping Orbit 2Jun 15, 2012685

Carol said that as they have looked at the higher-resolution data and improved their calibration and interpretation, they began to realize something surprising about Vesta's surface: a lot of what we see there didn't originate on Vesta. They were finding a lot of hydrated material on the surface -- that is, minerals that contain water molecules or hydroxyl groups inside their crystal structures. The hydrated materials were associated with older terrains (primarily eucrite-like material), and also with dark material. Vesta's dark material really stands out in the Framing Camera photos, and has been a major puzzle:

Dark spots on Vesta
Dark spots on Vesta One of the more intriguing aspects of Vesta as seen by Dawn is the "dark material" found across its surface. In most places, dark material is associated with craters. In this photo, the dark material shows up in the ejecta around two large impact craters, but the relationship between the dark stuff and the crater is not obvious. The left crater is the 17-kilometer-diameter Fulvia. In some places the dark material seems to be associated with small secondary craters, but in other places there is no obvious origin. This photo consists of three high-resolution images taken on December 20, 2011, March 13, 2012 and April 17, 2012, colorized with a lower-resolution image taken on September 30, 2011.Image: NASA / JPL / UCLA / MPS / DLR / IDA / Björn Jónsson
Aelia crater, Vesta
Aelia crater, Vesta Aelia is a 4.3-kilometer-diameter crater 14 degrees south of Vesta's equator that shows intriguing variety in the albedo of its ejecta. Streaks of ejecta radiate in all directions, including down the slope of the adjacent Rufillia crater, which is 15.8 kilometers across. This photo is a mosaic of two images taken during the Low Altitude Mapping Orbit phase of Dawn's mission on January 10 and April 30, 2012, colorized with data taken during the High Altitude Mapping Orbit phase on on October 4, 2011.Image: NASA / JPL / UCLA / MPS / DLR / IDA / Björn Jónsson

Hydrated materials are puzzling. To get them, you need water interacting with rocks. Vesta's too hot for water, or so we thought. But there's evidence, again, in meteorites, for what might have happened. Howardites aren't only a mixture of diogenites and eucrites. They also have some other interesting additives: carbonaceous chondrite material. The key word in there is carbonaceous -- carbon-rich -- that's stuff that you also wouldn't expect to find on Vesta. The carbon-rich material and the water or hydrated materials could have come in from outside Vesta, delivered by impacts of debris that came from much farther out in the solar system.

Carol referred to a 2012 paper by Vishnu Reddy and coauthors, which showed that the scattered deposits of dark material on Vesta are strongly associated with the rim and floor of the earlier of the two large south polar impacts, Veneneia. Reddy proposed an explanation: the object that crashed into Vesta to form the Veneneia impact basin was rich in carbonaceous and hydrated materials, and plastered Vesta's surface with them. It's possible that such an impact could've happened at a speed as slow as 2 kilometers per second, which would have preserved a lot of the original impactor's materials on the surface. Later, the big Rheasilvia impact wiped out half of the Veneneia impact basin and covered the rest of it with bright Rheasilvia ejecta. Since that time, other impact events have "gardened" the surface, exposing patches of dark Veneneia material here and there to make the pattern we see today. Reddy and coworkers admit that this scenario requires several low-probability events, however, and can't rule out the possibility that the dark material was delivered in many separate impact events over a long period of time. For her part, Carol told me she thinks both scenarios are partially correct. The highest concentrations of dark material are in places where old surface is exposed; these just happen to be places that have escaped the later large impacts that would've reset the record of dark material arriving on the surface over time. But it's also likely that the delivery of dark material has happened in a few large pulses, and one of those certainly could've been the Veneneia impact.

Distribution of dark material on Vesta
Distribution of dark material on Vesta Dark material is found all over Vesta, most often associated with impact craters (circles on the map). It is also found in isolated spots (diamonds), many of which are probably secondary impact craters. In two locations, it's found near a topographic high: Lucaria Tholus (star in the southern hemisphere) and Aricia Tholus (star in the northern hemisphere). Also on the map are a black line for the outline of the Rheasilvia basin, and a red line for the incomplete rim of the Veneneia basin. Note that there are few exposures of dark material inside Rheasilvia, but many within and outside Veneneia.Image: NASA / JPL / UCLA / MPS / DLR / IDA / map by Vishnu Reddy et al.

Another cool surprise at Vesta was the presence of parallel sets of troughs, which are pretty clearly related to those two enormous south polar impacts. Each set of troughs formed when one of the impacts rang Vesta like a bell. Carol told me that the presence of those troughs means that there is serious damage to Vesta's interior, not just the surface, as a result of the two impacts. She said that jibes with a bulk density for Vesta that's low relative to HED meteorites; there may be as much as 10% porosity in places on Vesta in the form of open cracks within a shattered crust.

Vesta's troughs at two scales
Vesta's troughs at two scales These Dawn images show a region around Vesta's equatorial troughs with two different resolutions. The image on the left has a lower resolution of 260 meters per pixel and the image on the right has a higher resolution of 66 meters per pixel. Many areas of dark material are visible in the lower-resolution image, including the dark hill (in box). The higher-resolution image displays more detail of this hill, such as its irregular contact with the rest of Vesta's surface. Many more details are also visible in the right hand image when compared to the left hand image, such as small linear grooves running roughly parallel to the troughs and slumping/landslide features in the crater in the bottom right corner. The wider-view image was obtained by Dawn during Survey Orbit, on August 20, 2011, and the narrower-view image was taken near the High-Altitude Mapping Orbit, on September 20. These images were taken through the camera's clear filter. The distance to the surface of Vesta was 2740 and 673 kilometers. Other spacecraft get wide- and narrow-angle views by carrying two cameras with different optics; Dawn accomplishes the same thing with a single camera by adjusting the height of its orbit.Image: NASA / JPL / UCLA / MPS / DLR / IDA

But Carol says that things got really good when Dawn dropped to its lowest altitude, the appropriately named Low Altitude Mapping Orbit. At low altitude, they saw "a tremendous amount of geology on the surface of Vesta, much more akin to what we see on Mars or even Earth." There was geomorphological variety -- lots of different landforms, evidence for dynamic events like landslides. They came to realize that Vesta has a "very slope-intensive environment." Like smaller asteroids, Vesta has very steep slopes; like planets, it has relatively high gravity. That sets up a world that will have lots and lots of mass movement of rock cascading down slopes.  "That's created some interesting exposures of material, and very small-scale geology."

Aricia Tholus, Vesta
Aricia Tholus, Vesta Aricia Tholus is a hill on Vesta with a relatively fresh impact crater at its peak. The ejecta from the impact crater is some of the darkest material on the surface of Vesta. This photo combines color images taken during Dawn's High-Altitude Mapping Orbit with higher-resolution images taken during the Low-Altitude Mapping Orbit. The HAMO images were obtained by Dawn on October 26, 2011 and the LAMO images on April 30, 2012.Image: NASA / JPL / UCLA / MPS / DLR / IDA / Björn Jónsson

Dawn has also seen a lot of mineral variety, and also a lot of variety in how Vesta's bright and dark materials related to the rest of the surface.Carol also mentioned the pitted terrains inside some craters, which I wrote a long blog entry about after the Lunar and Planetary Science Conference. The short version: there are landforms that Jennifer Scully is interpreting to mean that Vesta has pockets of buried ice that can get exposed and melted during impacts, forming water-carved gullies and collapse pits on the otherwise totally dry and relatively hot surface of an asteroid. Carol seemed to be excited about the idea, but was also circumspect: "this is meeting a tremendous amount of resistance, for obvious reasons. Where does the water come from? No one wants to accept there could be lenses of ice in subsurface, or enough water that could be mobilized out of water bound in minerals that could cause these transient flooding events." Work continues.

Mosaic of Low-Altitude Mapping Orbit images of Cornelia crater, Vesta
Mosaic of Low-Altitude Mapping Orbit images of Cornelia crater, Vesta This mosaic is composed of five images of Vesta captured by Dawn during its Low Altitude Mapping Orbit phase. The images were taken between January 11 and March 13, 2012. At full resolution, it is about 20 meters per pixel, covering an area about 30 kilometers across.Image: NASA / JPL / UCLA / MPS / DLR / IDA

Work continues in a lot of areas, actually. Carol talked about a very recent work, just published in Icarus, on Vesta's gravity. There are actually four gravity-related papers in Icarus, and I really tried to learn something from them but made little headway. Carol says that now that the gravity maps are out, she's working on trying to tie the present-day gravity to the geologic history of Vesta, and the story seems to be a complex one. There's more to come.

One final item Carol mentioned: Vesta has no moons. This wasn't very surprising, but they did search, and didn't find any. (On its approach to Ceres, Dawn will be searching for moons there, too.)

It's interesting that the highest-resolution images, both from the Framing Camera and VIR, have yielded some of the more surprising discoveries of the Dawn mission. Those highest-resolution images, taken from the lowest orbit, were not in Dawn's original plan or science requirements. Dawn is a survey mission whose goals are to completely map two of the biggest worlds in the asteroid belt. And they are huge worlds; they don't fit on my composite photo of asteroids visited by spacecraft. They really are planet-scale objects, more appropriately compared to places like Mercury, the Moon, and outer planet moons. In order to map such big worlds, you have to balance a desire for detailed photos against the goal of completing the whole globe. Dawn was designed to get global coverage of Vesta and Ceres at a medium survey resolution. Its lowest orbits were designed to benefit the gravity and neutron spectrometer mapping; the cameras only rode along, their images a bonus. As it turned out, though, the crafty Dawn planners not only were able to squeeze imaging in to the lowest orbit, they managed to image almost the entire world at that highest resolution. And the effort seriously paid off. Just look.

The Planetary Fund

Your support powers our mission to explore worlds, find life, and defend Earth. Give today!