Help Shape the Future of Space Exploration

Join The Planetary Society Now  arrow.png

Join our eNewsletter for updates & action alerts

    Please leave this field empty
Blogs

Mars Express artist's concept at Mars

Hypervelocity Cratering and Riding Out the Risk

Posted by ESA Mars Express Team

06-03-2014 19:34 CST

Topics: comets, Mars Express, explaining technology, comet Siding Spring, impact cratering

This article originally appeared on the Mars Express Blog and is reposted here with permission.


You know any blog post that includes the term 'hypervelocity cratering' has got to relate to some pretty serious stuff! Today's update from the Mars Express team contains the realisation that, for some of the risks associated with October's Siding Spring flyby, there may not be much the team can do. This is as close to real-life spacecraft operations you can get without actually sitting on console at ESOC.

Hubble solar array impact crater

ESA / NASA

Hubble solar array impact crater

Last week, we considered the spacecraft structure and how it might be affected by any impact of particles – even tiny ones – from the comet's coma.

Whilst it is clear that a particle striking the spacecraft has the ability to cause physical damage to either the structure or components, what is not necessarily obvious is the potential for it to cause disruption to the spacecraft’s many and delicate electrical units. Why is this?

As the velocity (and therefore kinetic energy) of these particles is (very, very) high, there can be electromagnetic effects resulting from these impacts too.

When the particle strikes the body of the spacecraft, not only is the particle itself vaporised, but also some of the material from the part of the spacecraft that has been struck,  an effect called 'hypervelocity cratering' (this has been well investigated during space debris studies in low-Earth orbit.)

This plume of vaporised material is so hot that it forms a plasma (an ionised gas) and it is this charged plasma that has the ability to cause issues for the spacecraft’s electrical systems.

Here are three examples of the type of effects we've been considering.

  1. The conductive plasma can act a like a wire and cause short circuits by electrically connecting two different components/units together that are normally electrically isolated from one another.
  2. The outer surface of the spacecraft become electrically charged due to light from the Sun knocking electrons off the surface (the photoelectric effect) and by being hit by charged particles from the Solar Wind. If an impact were to puncture into the spacecraft, the plasma produced could provide an electrical connection from the outer body to a unit/component inside, allowing the electrical charge to flow from the spacecraft surface into the unit in question.
  3. The plasma has a magnetic and electrical fields associated with it (due to the difference in velocities of its component ions and electrons) moving at a similar speed to the original impact velocity; these moving fields potentially have the ability to induce large currents in cables or components).

What protection do the spacecraft’s electrical systems have?

Interior view of Mars Express, seen during construction

ESA / Astrium

Interior view of Mars Express, seen during construction

As you can see from the image (above) taken during the construction of Mars Express, the individual electrical units are contained in their own protective housing and the cables are all wrapped in an electrically conductive screen. This provides protection against electromagnetic (EM) effects both from other units inside the spacecraft and from external sources.

Additionally, the electrical interfaces of each unit are provided with protection against excess electrical currents. The power connections are fitted with current limiters that will cut the power to the unit if the current flow exceeds a given value. The data connections are also provided with protection in the form of opto-isolators and electrical filters.

Will this protection be enough?

This appears to be a difficult question to answer...!

As noted, the spacecraft’s electrical systems have safety measures built in, but if an induced current were large enough, or the short circuit happened in the wrong place, it is theoretically possible that these safeguards could be defeated.

There is a complex interconnectivity to the electrical systems on MEX, which means that induced currents have many possible paths to take. The effects are also highly dependent on the properties of the particle impacting the spacecraft, where on the spacecraft the hit occurs, the properties of the produced plasma, which components the plasma interacts with, what state the components in question are in, &etc.

As you can see, there are so many variables governing what might happen that trying to anticipate specific problems can become almost meaningless, as adjusting any of these variables even slightly can vastly effect the eventual outcome.

The question, then, is: What can we do?

A obvious possibility is to switch units off. This won’t always protect against induced currents, but it can reduce the risk/effects of short circuits.

So if we assume that is the way to go, the next question is what realistically can we switch off?

As has been discussed in the earlier blog posts, we will be required to maintain a specific pointing during the encounter to best protect the spacecraft. And as we cannot spin Mars Express, this means the Attitude & Orbit Control System (AOCS) must be used to keep the spacecraft correctly oriented. Therefore the AOCS (and all its component units) must also be left on.

For the AOCS to function, this then requires that the main computer is also on – which means the power control units must also be on.

We cannot disconnect the solar arrays, so they will be electrically active throughout. As the Reaction Control System (RCS) thrusters may be called upon, then the thermal control systems also need to be on, so as to regulate tank and fuel-line temperatures. So as you can see, there are not a lot of units left to consider. Almost everything has to stay on!

This whole issue is one we’re actively considering right now, so we have yet to come to any formal conclusions as yet.

This is a good example of a situation in which we will likely have to make an assessment of what to do even though we don’t have a lot of data on which to base a decision and for which it would appear, at the moment at least, that our options are limited.

It is conceivable that we may decide that there is little we can do to significantly reduce the risk of EM effects and this may be something we simply have to live with.

 
See other posts from March 2014

 

Or read more blog entries about: comets, Mars Express, explaining technology, comet Siding Spring, impact cratering

Comments:

Leave a Comment:

You must be logged in to submit a comment. Log in now.
Facebook Twitter Email RSS AddThis

Blog Search

JOIN THE
PLANETARY SOCIETY

Our Curiosity Knows No Bounds!

Become a member of The Planetary Society and together we will create the future of space exploration.

Join Us

Featured Images

Curiosity wheel survey, sol 708

Curiosity mobility system, labeled
Diagram of a Curiosity wheel
Mars in July/August 2014
More Images

Featured Video

View Larger »

Fly to an Asteroid!

Travel to Bennu on the OSIRIS-REx spacecraft!

Send your name

Join the New Millennium Committee

Let’s invent the future together!

Become a Member

Connect With Us

Facebook! Twitter! Google+ and more…
Continue the conversation with our online community!