Help Shape the Future of Space Exploration

Join The Planetary Society Now Join Now!

Join our eNewsletter for updates & action alerts

   Please leave this field empty
Blogs

See other posts from September 2003

Amir Alexander

New and Improved SETI@home will Form the Backbone of Distributed Computing Network

Posted by Amir Alexander

2003/09/25 12:00 CDT

Topics: Planetary Society Projects, Planetary Society, SETI

BOINC - the "Berkeley Open Infrastructure for Network Computing" - is moving through its development phases, and a new version of SETI@home is being tested right along with it. BOINC, as some of you may recall, is the system being developed by SETI@home project director David Anderson and his team to spread the credo of distributed computing to fields beyond SETI. The remarkable success of SETI@home, which quickly became the most powerful computing network ever assembled, made it clear that distributed computing could be used for many other computing-intensive scientific projects. BOINC will make it possible for researchers in areas as diverse as molecular biology, climatology, and astrophysics to tap into the enormous but under-utilized calculating power of personal computers world-wide.

Why BOINC?

In principle, scientists do not necessarily have to wait around for BOINC to be completed in order to make use of distributed computing in their research. They could launch their own distributed computing programs, and some indeed have done so. folding@home and climateprediction.net are only two of the better known projects, dedicated to research in the fields of molecular biology and climatology respectively. But launching an independent distributed computing project is a complex and labor-intensive task even for professional computer scientists. For researchers in other fields it is a daunting undertaking, which would take precious time and resources away from the main focus their of research. They will, in most cases, avoid it. BOINC will change all that. With BOINC, the basic distributed computing infrastructure will be available to any scientific group that wishes to make use of this remarkable new technique. With relatively small changes, the basic BOINC format could be used to research anything from long term evolutionary changes to the search for gravity waves. Furthermore, BOINC will bring to these different projects an inestimable resource without which no distributed computing project can proceed - a large pool of PC users, willing to put their computers' calculating power in the service of science.

Currently BOINC is in its "Beta testing" phase, meaning that it is being tested by a limited number of users who are running the program on their computers. Within the next two months David Anderson and his team hope to expand this select group of volunteers from several hundred to around ten thousand.

For several months now, the Beta testers have been running a BOINC-based program known as "astropulse." This program searches the masses of data collected by the SETI@home receiver at Arecibo for brief but powerful electromagnetic bursts, signifying the collapse of black holes. In the past few weeks astropulse was joined on the volunteers' computers by an experimental BOINC-based version of SETI@home itself. In the long term, the current SETI@home platform will be phased out for all users and replaced by the new BOINC version.

The New SETI@home

What will the new SETI@home be like? In most respects it will not be very different from the current version, but it will allow for greater flexibility for both the SETI@home scientists and for the millions of users around the world who run the program on their computers. Most notably, the current SETI@home program is designed to analyze only data that fits the parameters of the equipment currenty used at Arecibo. For example, the program only looks for gaussians that last around 12 seconds, because that happens to be the time it takes the Arecibo beam to scan any given point in the sky. Similarly, it can only analyze data from a 2 bit recorder, because that happens to be the type of instrument currently used to record data at Arecibo, and so on. Any data that deviates from these strict parameters simply cannot be processed. As a result, the current SETI@home program can never be used to analyze data collected at any location other than Arecibo, or using instruments other than those currently in place.

This can be a problem. It could, for instance become a serious hurdle if and when SETI@home follows up on its plans to collect data at Australia's Parkes observatory, because the parameters and instruments on the Australian radio telescopes are very different from those at Arecibo. To analyze this data, SETI@home users would have to download a completely new version of the program, tailored specifically for the Parkes observatory. Once they did so, they could no longer process the old-style data originating at Arecibo.

Even now, when Arecibo is the sole source of SETI@home observations, the inflexibility of the program can cause problems. This became clear following the Stellar Countdown session at Arecibo last March, when in addition to SETI@home's standard 2 bit recorder, Chief Scientist Dan Werthimer's team employed a highly sensitive 8 bit recorder as well. The analysis of the 2 bit recordings was completed quickly, by sending ordinary work units to users around the world. The 8 bit recordings, however, are still unanalyzed because they cannot be processed by the standard SETI@home program, installed on users computers.

This will soon change, says David Anderson. In the new BOINC-based SETI@home parameters such as a radio telescope's beam-width or a recorder's level of sensitivity will not be "hard wired" into the program. Instead, they will be part of the information provided with every work unit. A standard work unit from Arecibo will instruct the program that the data was recorded at a 2 bit sensitivity, and that the telescope's beam-width - and therefore a gaussian's duration - is 12 seconds. A work unit originating at Parkes, or recorded at a higher resolution, will carry with it different parameters and the SETI@home program will adjust itself accordingly.

SETI@home and BOINC are gradually converging, and the benefits for both are substantial. While SETI@home enjoys the increased flexibility of the BOINC platform, it brings to BOINC something of inestimable value to a distributed computing project: millions of SETI@home users, willing to use their computers' processing power for the advancement of scientific research.

 

Or read more blog entries about: Planetary Society Projects, Planetary Society, SETI

Comments:

Leave a Comment:

You must be logged in to submit a comment. Log in now.
Facebook Twitter Email RSS AddThis

Blog Search

JOIN THE
PLANETARY SOCIETY

Our Curiosity Knows No Bounds!

Become a member of The Planetary Society and together we will create the future of space exploration.

Join Us

Featured Images

Phobos-Grunt imaged in orbit

Scanning electron microscope images of two pieces of Surveyor 3
A conceptual Mars outpost making rocket propellants from the local environment
Pete Conrad at the Surveyor 3 spacecraft, with the Apollo 12 Lunar Module in the background
More Images

Featured Video

View Larger »

Fly to an Asteroid!

Travel to Bennu on the OSIRIS-REx spacecraft!

Send your name

Join the New Millennium Committee

Let’s invent the future together!

Become a Member

Connect With Us

Facebook! Twitter! Google+ and more…
Continue the conversation with our online community!