Help Shape the Future of Space Exploration

Join The Planetary Society Now  arrow.png

Join our eNewsletter for updates & action alerts

    Please leave this field empty
Facebook Twitter Email RSS AddThis

Headshot of Emily Lakdawalla

MAVEN dodges Phobos, with (maybe) a little help from Curiosity

Posted By Emily Lakdawalla

06-03-2017 6:00 CST

Topics: pretty pictures, mission status, MAVEN, Mars, Curiosity (Mars Science Laboratory), Phobos

You may have heard this week that NASA's MAVEN orbiter executed a short rocket burn in order to prevent a future collision with Phobos. If you haven't, here are the key elements of the story:

On Tuesday [February 28, 2017] the spacecraft carried out a rocket motor burn that boosted its velocity by 0.4 meters per second (less than 1 mile per hour). Although a small correction, it was enough that—projected to one week later when the collision would otherwise have occurred—MAVEN would miss the lumpy, crater-filled moon by about 2.5 minutes....

With one week’s advance notice, it looked like MAVEN and Phobos had a good chance of hitting each other on Monday, March 6, arriving at their orbit crossing point within about 7 seconds of each other. Given Phobos’ size (modeled for simplicity as a 30-kilometer sphere, a bit larger than the actual moon in order to be conservative), they had a high probability of colliding if no action were taken.

Phobos' orbit is roughly 30,000 kilometers in circumference, and it travels that distance more than three times a day, so its speed in its orbit around Mars is about 100,000 kilometers per day, or about 4000 kilometers per hour, or about one kilometer per second. Since it's about 30 kilometers in diameter, it takes about 30 seconds for it to cross any one point along its orbit. If MAVEN crossed the plane of Phobos' orbit at that point in any of those 30 seconds -- wham! Thinking about it, the fact that they're extending MAVEN's miss time by only 150 seconds is pretty amazing. The two bodies are going to pass very, very close.

We can predict Phobos' position so well thanks mostly to a long history of Earth-based observations, but orbit prediction has recently received a boost from some unlikely occasional astronomers: Mars rovers. Once in a while, you'll see cool videos shot from the surface of Mars, watching one moon or another pass across the face of the Sun. They have also observed Mars' moons passing by each other in mutual events, or passing by bright stars like Regulus and Aldebaran. These observations are cool in their own right, but they also permit astronomers to make very precise measurements of the positions of the moons.

Phobos, the larger of the two moons of Mars, passes directly in front of the Sun in this sequence of 89 images taken by Curiosity on August 20, 2013. The pace of the video matches the actual elapsed time of 32 seconds.

NASA / JPL / MSSS / Texas A & M University

Movie of Phobos and Deimos mutual event, Curiosity sol 351

NASA / JPL-Caltech / Malin Space Science Systems / Texas A&M University

Movie of Phobos and Deimos mutual event, Curiosity sol 351
This movie clip shows Phobos, the larger of the two moons of Mars, passing in front of the other Martian moon, Deimos, on August 1 2013, from the perspective of NASA's Mars rover Curiosity. The clip includes interpolated frames smoothing out the motion between frames from Curiosity's Mast Camera (Mastcam). Mastcam took images 1.4 seconds apart. With the interpolated frames, this clip has 10 frames per second. It runs for 20 seconds, matching the actual time elapsed.

I asked Mark Lemmon (the Texas A&M researcher who's the driving force behind most of the rovers' astronomical observations) whether Curiosity's imaging of Phobos helped with the predictions that led to MAVEN's orbit adjustment. He wasn't sure, but the early Curiosity observations did contribute to increasing the accuracy of our predictions for Phobos' prediction by a few tens of seconds -- similar in magnitude to the period of danger for MAVEN.

Observations like Curiosity's don't make collision avoidance maneuvers more likely; they actually allow navigators to conduct such maneuvers less frequently. If we didn't know Phobos' position accurately to within a couple tens of seconds, the navigators would have to keep MAVEN out of a much bigger part of Phobos' orbit, modeling Phobos as a noodle more than 100 kilometers long. It just goes to show how better knowledge of our environment leads to a reduction in our overall exposure to risk, and a sharpening of our understanding about which risks really do deserve attention. It's a lesson that can be broadened to a lot of our natural world.

Moonset over Mount Sharp

NASA / JPL / MSSS / Justin Cowart

Moonset over Mount Sharp
This image combines a single Mastcam frame taken of Phobos behind Mt. Sharp on sol 613 (April 28, 2014) with three images from a 360-degree mosaic acquired during the afternoon of sol 610 (April 24, 2014) to extend the foreground view and balance the image composition.

P.S. You may be asking how my book is going. I'm enjoying the sabbatical time to really focus on it, and progress is being made.

See other posts from March 2017


Read more blog entries about: pretty pictures, mission status, MAVEN, Mars, Curiosity (Mars Science Laboratory), Phobos


Karen: 03/06/2017 08:12 CST

Your absence has been noticed and missed. Thanks for the update! :)

Grover: 03/06/2017 10:55 CST

There was a 2013 blog entry where Emily interviewed Mark Lemmon about observing Phobos and Deimos with the rovers... ML: We want to watch their positions around their orbits to better know the orbit. The moons have been observed for quite a long time from Earth. Right now, there are two numerical ephemerides for the moons, two different mathematical solutions predicting their future positions. These two solutions diverge by kilometers, up to an order of magnitude more than their error bars. The two solutions have systematic errors. Our data, on the moons' positions as seen from Mars, can fix that, and pin them down more precisely. ...The ephemerides differ. In our 2004 transit imaging, Deimos was 40 kilometers from where it was expected, due to incorrect assumptions about this.

Leave a Comment:

You must be logged in to submit a comment. Log in now.

Space in Images

Pretty pictures and
awe-inspiring science.

See More

Join The Planetary Society

Let’s explore the cosmos together!

Become a Member

Connect With Us

Facebook, Twitter, YouTube and more…
Continue the conversation with our online community!