See other posts from February 2012
Figuring out orbital positions from orbital elements
Posted By Emily Lakdawalla
2012/02/16 05:03 CST
Topics: explaining science
A few times a year I find myself confronting a table full of numbers describing the orbits of things in the solar system, and cursing at myself because I've forgotten, again, what all these numbers mean and how to manipulate them to get the particular numbers I want. In particular, despite the fact that determining perihelion and aphelion distances from semimajor axis length and eccentricity could hardly be easier, I still always draw a blank. So I'm sitting down now to write a blog entry that will tell me what these numbers mean and how to use them to get the numbers I want! I'm posting it because I figure it'll be useful for some of you, too. In the following post, I'll show you why I was interested in getting these numbers today.
Here we go. The shape of an elliptical orbit is described by two parameters:
- semi-major axis, a: one half of the ellipse's long axis
- eccentricity, e: 0 for circular orbits; between 0 and 1 for ellipses
- Periapsis distance = a(1-e)
- Apoapsis distance = a(1+e)
- Orbital period = 2π√(a3/GM)
- Orbital period (solar orbit, in years, with a in AU) = a1.5
(and recall that 1 AU = 149.60×106 km)

Lasunncty via Wikimedia Commons
Keplerian orbital elements
In this diagram, an orbital plane (yellow) intersects a reference plane (gray). For objects in solar orbit, the reference plane is usually the plane of the ecliptic. The intersection is called the line of nodes, as it connects the center of mass with the ascending and descending nodes. The Vernal Point, (♈) is the heliocentric longitude of 0, the angular position of Earth's northern vernal equinox. Heliocentric longitudes count up in a prograde direction (counterclockwise, when viewed from the north side of the ecliptic plane).- Go to http://ssd.jpl.nasa.gov/horizons.cgi
- Change the Target Body to the one you're interested in (click "change" and search on the name or number or provisional designation)
- Change Observer Location to "@sun"
- Go to Table Settings and check "Helio eclip. lon & lat" (or set the list to "18,20" to get heliocentric lat/lon and range)
- Click Generate Ephemeris and look for "hEcl-Lon" and "hEcl-Lat," which are in degrees, and "delta," which is the range in AU.
HORIZONS can also be used to find the distance between Earth and any of these objects, too, obviously; and you can have it spit the results directly to a text file, which is very handy!
Blog Search
Support our Asteroid Hunters
They are Watching the Skies for You!
Our researchers, worldwide, do absolutely critical work.
Asteroid 2012DA14 was a close one.
It missed us. But there are more out there.

























David Sims: 01/28/2013 12:06 CST
David Sims: 01/28/2013 12:13 CST
David Sims: 01/28/2013 12:18 CST
David Sims: 01/28/2013 12:18 CST
David Sims: 01/28/2013 12:29 CST
Anonymous: 01/28/2013 12:29 CST