See other posts from March 2008
White Rock through the ages: Mars Express (2004-present)
Posted by Emily Lakdawalla
2008/03/27 05:28 CDT
Topics:
When we last visited White Rock on Mars, both Mars Global Surveyor and 2001 Mars Odyssey were mapping the planet. In 2004, another four spacecraft were approaching: the Mars Exploration Rovers Spirit and Opportunity, and, for the first time, two missions that were neither American nor Russian: Japan's Nozomi and the European Space Agency's Mars Express. Nozomi's mission was doomed to failure, but Mars Express joined the traffic jam at Mars and quickly returned uniquely beautiful images with a camera system unlike any that had been sent to Mars previously.
Mars Express' High Resolution Stereo Camera (HRSC) is a pushbroom style of digital camera, like MOC on Mars Global Surveyor and THEMIS on 2001 Mars Odyssey, so it captures long, narrow image strips. But while MOC is a monochrome camera, and THEMIS' color channels share a common boresight, the nine channels of HRSC all point in slightly different directions, some facing forward along the orbital path, some pointing nadir (downward), and some facing backward. By capturing forward-looking and backward-looking images simultaneously, looking at the same landscape from two different directions at nearly the same time, HRSC builds a data set that can, after some data processing, be used to develop three-dimensional, color views of Mars' landscape. Something about the data processing that they do with HRSC images brings out subtle color variations in ways that you tend not to see in images from other orbiters, giving them, to my mind, a painterly quality; they remind me of the artistic scenery from classic animated movies. It helps that Mars Express views Mars with the Sun fairly high overhead, which reduces shadows and makes color variations more obvious.
Freie Universität Berlin and DLR Berlin,
White Rock from Mars Express: color view
Mars Express captured this view of White Rock on Mars on December 25, 2004. The resolution of the full-size image is 100 meters per pixel. The small "outliers" of White Rock material first noted in Mars Odyssey THEMIS images are clearly visible in a small crater to the southeast of the main White Rock deposit
Freie Universität Berlin
The HRSCview interface
HRSCview provides an easy-to-use tool for accessing data from the High Resolution Stereo Camera on ESA's Mars Express.
Freie Universität Berlin and DLR Berlin
White Rock and environs from Mars Express HRSC
This image of White Rock was taken through the panchromatic (nadir-pointing) filter on Mars Express' HRSC camera on December 25, 2004. The wide area covered by the HRSC image also takes in some interesting craters on the rim of Pollack, including a small crater, about 100 meters in diameter, with a bright floor. Could this be more of the White Rock material, sitting at an elevation much higher than the floor of Pollack crater?
Freie Universität Berlin and DLR Berlin
Possible outliers of White Rock material
The crater at left, 2.5 kilometers in diameter, contains some suspiciously bright deposits in its floor, thought to be outliers of the same bright white deposit that makes up the White Rock feature on the floor of Pollack crater. The smaller, 1-kilometer-diameter crater at right is located on the rim of Pollack crater and also has an anomalously bright floor, but its rim is also bright; it is unclear whether this feature has any relation at all to White Rock.
White Rock from Mars Express: 3D flyover
This is a still from a 3D movie of the White Rock feature within Pollack crater. The topography is exaggerated by a factor of 3. The movie is available for download in Quicktime .mov format in two sizes:640 pixels wide (25 MB)1280 pixels wide (68 MB)
Freie Universität Berlin and DLR Berlin / rendering by Doug Ellison
White Rock from Mars Express: 3D anaglyph
Mars Express also carries a visible and infrared imaging spectrometer called OMEGA, the first instrument of its kind sent to Mars. There had been other spectrometers, like TES on Mars Global Surveyor, which studied the longer-wavelength thermal portion of the infrared spectrum with low spatial but high spectral resolution, and THEMIS on Mars Odyssey, which studied visible and thermal wavelengths with high spatial but low spectral resolution. OMEGA was the first near-infrared imaging spectrometer sent to Mars, and the first to have high spectral resolution with reasonably good spatial resolution. All these tradeoffs between wavelength range, pixel size, and spectral resolution can be headache-inducing; and I'm not even bringing fractional coverage of the planet into the conversation. So just take my word for it when I say that OMEGA is a wholly different beast from TES and THEMIS.
Probably the greatest success of OMEGA has been the positive identification at Mars of small exposures of layered rocks bearing minerals that require liquid water for their formation, like sulfates and salts. White Rock seems a natural place to look for these. The OMEGA team mentioned in a paper they published in Science that "not all light-toned layered deposits...show evidence for sulfates, such as the White Rock area within Pollack crater: OMEGA confirms, with sub-kilometer-resolution mapping, the lack of evidence for an aqueous origin."
I fired off an email to OMEGA principal investigator Jean-Pierre Bibring to request some illustrations of this, but I never got a reply. So it was sheer luck that, while chatting with new blogger Ryan Anderson a couple weeks ago at the Lunar and Planetary Science Conference, I brought up this frustration, to which Ryan replied offhandedly that he had computer code that could produce images from archived OMEGA data, and was I interested? Indeed I was; Ryan came through for me with the images below. My apologies to Ryan for how much of his time this took. (I should probably also apologize to Ryan's graduate advisor, who probably doesn't know about the time Ryan spent working for me and not him!)
The images are mosaics of three observations, a high-resolution one (at about 500 meters per pixel) that was obviously targeted at White Rock, overlaid on a couple of lower-resolution ones. There are noticeable differences among the three observations, which result from various calibration issues. This first image shows the average albedo of the area across all the wavelengths sampled by OMEGA, from roughly 0.5 to 5 micrometers. It looks broadly similar to the high-resolution image I showed above, down to the oddly dark spot to the north of White Rock that I hadn't noticed before.
Each of the pixels in that image actually contains a wealth of information on how a 500-meter-square bit of Mars reflects light across hundreds of individual bits of the electromagnetic spectrum. That is, from each point, you can collect a spectrum, a graph of how reflective the pixel is with wavelength. The graph below contains four spectra measured by OMEGA, two from the White Rock area and two from Meridiani planum, Opportunity's landing region, for comparison. (Ryan chose Meridiani spots for comparison because that's what he's most familiar with, and the spectra were ready at hand.)
Courtesy ESA / OMEGA / plot by Ryan Anderson
OMEGA spectra from White Rock and Meridiani Planum, Mars
Each of the line son this graph is a "spectrum," a plot of how relfective is a spot on Mars with increasing wavelength. The black line is a representative spectrum from White Rock itself. The green line represents the dark sand on the crater floor near White Rock. The blue line is an olivine-rich spectrum from Meridiani planum. The red line is a spectrum rich in iron and magnesium-bearing clay minerals from Meridiani Planum.Because OMEGA is an imaging spectrometer, you can examine spectra like these for every single pixel in the image. But that makes it a bit hard to see the big picture, to identify the spectral variations across the scene. One thing a spectroscopist can do is to take each pixel in the OMEGA image and calculate certain properties of its spectrum, then represent those properties on a new image. The eight pictures below examine different features of the spectra at each point in the OMEGA image.
The pictures labeled "1.9" and "2.2" and "2.3 μm band" are looking for characteristic dips in the spectra like the ones you can see in the red line on the graph above. A dip at 1.9 identifies water; a dip at 2.2 identifies the presence of aluminum hydroxide (AlOH), and a dip at 2.3 identifies the presence of iron or magnesium hydroxide (Fe/MgOH). All of these are intended to search for clay minerals. "Hot" colors identify deeper dips in the spectra. Ryan's code is finding some hints of clays in speckles across the crater floor, but none at all in White Rock itself.All in all, in fact, there's remarkably little about the composition of White Rock that can be interpreted from these maps, except that there's just no evidence that water played a role in its formation. One thing you can say is that there's a pretty strong olivine signature in the dark sand of the crater floor surrounding White Rock. Olivine is a very common mineral in the solar system, and its presence generally indicates that you're dealing with an area that hasn't experienced a lot of geologic processing. In particular, if you get olivine wet, it weathers extremely quickly into clay minerals. So one thing you can take away from the OMEGA results is that the crater floor hasn't been wet since that olivine-bearing sand got in there.
I think.
We only have one spacecraft left to go in our travels through time at White Rock, but it's a doozy: Mars Reconnaissance Orbiter. Stay tuned!
If you missed the previous installments, here they are: Mariner 9 - Viking - Mars Global Surveyor - 2001 Mars Odyssey.
Blog Search
JOIN THE
PLANETARY SOCIETY
Our Curiosity Knows No Bounds!
Become a member of The Planetary Society and together we will create the future of space exploration.





















Comments:
Leave a Comment:
You must be logged in to submit a comment. Log in now.