Help Shape the Future of Space Exploration

Join The Planetary Society Now  arrow.png

Join our eNewsletter for updates & action alerts

    Please leave this field empty
Blogs

Headshot of Bruce Betts

Our Improved Optical Search for ET

New hardware processes terabytes of data every second

Posted by Bruce Betts

08-10-2013 11:15 CDT

Topics: Planetary Society Projects, life, explaining technology, SETI, optical telescopes

The Planetary Society Optical SETI (OSETI) Telescope was successfully upgraded and fully tested, and is now fully operational looking for aliens. Here are some updates on the performance and progress. In summary, the upgraded telescope is performing just as hoped and is scanning the skies. But first, some background.

The OSETI telescope, whose construction was funded by the Planetary Society and its members, is operated in Harvard, Massachusetts by Harvard University Professor Paul Horowitz and his research group. It is the only optical all-sky SETI survey, scanning the skies every clear night, looking for billionth of a second laser pulses from distant extraterrestrials (none found yet, but wouldn’t that be a rather big discovery if they were).

Horowitz’s graduate student, Curtis Mead, completed his Ph.D. thesis “A Configurable Terasample-per-second Imaging System for Optical SETI” based on his development of the new OSETI telescope electronics system. Curtis reported, “The Advanced All-sky Optical SETI camera (AdvCam) is complete and has been operational since August, 2012.  It has completely exceeded my expectations and works better than I could have hoped.”

OSETI Telescope’s New AdvCam System

Paul Horowitz / Curtis Mead

OSETI Telescope’s New AdvCam System
The Planetary Society Optical SETI Telescope’s new AdvCam system with its Mother board (far/back of the “box”) and daughter boards.

AdvCam, designed by Curtis, and funded in part by Planetary Society members, improved significantly upon the already impressive back end electronics of the telescope. The electronics analyze terabytes (trillions of bytes) of information every second. When there is a possible “pulse event” (spike in photons that could be from an ET alien signal, or from something much more mundane), AdvCam can record every pixel in the two 512 pixel arrays for a period before and after the pulse. Its predecessor could only record a much smaller sampling of pixels over a shorter time frame.

AdvCam Electronics Boards from the OSETI Telescope

Paul Horowitz / Curtis Mead

AdvCam Electronics Boards from the OSETI Telescope
Two of the electronics (daughter) boards of the AdvCam advanced camera system on The Planetary Society Optical SETI Telescope in Harvard, Massachusetts.

Why is the upgrade so exciting: because it allows the rapid distinguishing and removal of non-ET signals, specifically Cherenkov radiation, and airplane strobe lights. The Cherenkov radiation was particularly a problem. Cherenkov radiation is caused by cosmic ray particles hitting the atmosphere and creating a brief blue glow.

Cherenkov Radiation on OSETI Telescope's AdvCam System

Curtis Mead

Cherenkov Radiation on OSETI Telescope's AdvCam System
What Cherenkov radiation looks like to the Planetary Society Optical SETI Telescope’s new AdvCam system in Harvard, Massachusetts. More accurately, this is a false color representation of pixels getting triggered within the system at varying intensities during a Cherenkov radiation event, created using actual data from an event. Each square is a PMT (Photomultiplier tube) and the sky images are split and sent to two identical sets of PMTs and only signals that appear on both are considered as “coincident pulses.” Here you see the signal on one of the PMTs on the left and on one on the right.

AdvCam also has extended the wavelength range being studied into the near-infrared, which is nice since we don’t know where ET will broadcast. The more wavelengths we watch, the more chance we will have of detecting the needle in a haystack signal.

Curtis reported:

The first observations with the Advanced All-sky Camera were performed on September 11th, 2012. As of March 31st, 2013, 174.4 hours of observations had been completed, covering 3,602 square degrees. Within these 174 hours, 318 coincidence events were recorded: eighteen of which are identified as Cherenkov light from cosmic ray induced extensive air showers, ~30 are traced to aircraft, and the rest are single-pixel, low-amplitude pulses caused by detector artifacts.

A little more detail, taken from Curtis’ Ph.D. thesis:

In general the coincidence events can be split into three broad categories: single pulses of a few nanoseconds that trigger multiple pixels, single pulses of a few nanoseconds that trigger single pixels, and events of microsecond duration consisting of many single photo-electron pulses. We believe these correspond, respectively, to cosmic rays, photomultiplier tube dark currents and photon pileup, and airplanes.

So, no ET discoveries, but the system is working as planned so we will be better able to find ET signals if they are there. AdvCam is doing its jobs: scanning the skies, analyzing the data, collecting the interesting stuff, and enabling the rapid sorting out of non-ET causes of “coincidence events.”

Help the Search: Contribute to Our OSETI Project


If you want to get a bit more into the electronics, some is presented in a bit more technical detail below, again from Curtis Mead (crank up your best Tim Allen technology grunting).

The finished camera electronics are able to sample pulse waveforms from our photomultiplier tube sensor array (1024 pixels, 300nm-900nm) at 1.5 Gsps (8 level, ~3-bit, 8k samples per channel) by using the trick of turning 8 LVDS input pairs into an 8-level flash ADC. As such (gigasample x 1k channel = terasample), my thesis is titled "A Configurable Terasample-per-second Imaging System for Optical SETI."

There are a few cute hardware tricks such as using a Spartan-6 as the coalescer for the trigger in/out signals for the 32 Virtex-5's. The trigger lines do double duty as serial terminal lines for the Microblaze processors on each Virtex during boot so that the bootloader and Linux boot messages can be debugged.  All power is delivered by Vicor switching supplies outside of the camera body and regulated using low-dropout linear regulators on the FPGA boards to keep switching supply noise low. This resulted in some interesting power requirements (1.4V @ 80A regulated to 1V for V5 cores and 2.8V @ 80A regulated to 2.5V for V5 I/O) and satisfyingly thick 0 gauge power cables for the camera.

 
See other posts from October 2013

 

Or read more blog entries about: Planetary Society Projects, life, explaining technology, SETI, optical telescopes

Comments:

Leave a Comment:

You must be logged in to submit a comment. Log in now.
Facebook Twitter Email RSS AddThis

Blog Search

LightSail - Flight by Light

Support LightSail!

In 2016, The Planetary Society’s LightSail program will take the technology a step further.

I want to help!

Featured Images

Hayabusa 2's ion power

Hayabusa 2 and DCAM3
Hayabusa 2 at Gate Position
Hayabusa 2 in flight
More Images

Featured Video

View Larger »

Space in Images

Pretty pictures and
awe-inspiring science.

See More

Join the New Millennium Committee

Let’s invent the future together!

Become a Member

Connect With Us

Facebook! Twitter! Google+ and more…
Continue the conversation with our online community!