Help Shape the Future of Space Exploration

Join The Planetary Society Now  arrow.png

Join our eNewsletter for updates & action alerts

    Please leave this field empty

Headshot of Emily Lakdawalla

Now Philae down to sleep

Posted by Emily Lakdawalla

15-11-2014 17:13 CST

Topics: Rosetta and Philae, mission status

As I was wrapping up the final Philae press briefing yesterday (summarized here), Daniel Scuka, ESA’s Senior Editor for Spacecraft Operations came down to where I was writing, and asked me if I’d be interested in returning to ESOC in the evening to watch with the ESA web team during what might be Philae’s final contact with Earth. “Really?” I asked. I made eye contact with Steven Young across the table, and asked Daniel, “Can he come too?”

In the end it was three of us serving as social media eyewitnesses to the end of Philae, with Chris Lintott joining too, unaccompanied by his usual camera crew. We were there only to watch and tweet, in the same room as the ESA web team including Daniel as well as stalwart ESA bloggers Emily Baldwin and Claudia Mignone. That room was right behind the main mission control center. The control center was in the hands of mission manager Stephan Ulamec and flight director Elsa Montagnon, with another eight or so spacecraft operations engineers involved.

ESOC Main Control Centre

Daniel Scuka

ESOC Main Control Centre

We arrived at around 9:30 in the evening, prepared for what might be a long wait for Philae to regain contact. Philae has only a relatively weak radio antenna, and depends upon Rosetta for relay. The comet rotates once in twelve hours; Rosetta, on a 30-kilometer orbit, passes around it once in about two weeks. So there is roughly one opportunity for contact between Rosetta and Philae in each comet day, drifting a little later each day as Rosetta moves slowly in its orbit.

Had Philae been in the expected landing site, Rosetta contact times would have been certain, and the radio contacts would have lasted nearly half a comet day — six hours. As its location is not known, the contact times are uncertain. Contacts routinely happening earlier or later might give a hint to lander longitude on the comet, but what was actually happening on radio contacts, Stephan Ulamec explained to us, was that the lander made contact nearly an hour later than expected, and lost contact nearly an hour earlier than expected. Furthermore, the connection, when initially made, was wobbly, coming in and out of signal lock for as much as an hour before becoming strong (Montagnon joked that “there is a tree in the way”). All of these indicate the lander’s view of the horizon is occluded by objects nearby.

While we waited, Daniel showed us some NavCam images he’d gotten from the flight dynamics team, showing what they thought was a bounce mark on the comet from the initial landing. But the images were a little confusing as they weren’t co-registered. I offered to help register them a little better and annotate them, and this was the result:

Philae first bounce site from Rosetta

ESA / Rosetta / NAVCAM / Emily Lakdawalla

Philae first bounce site from Rosetta

The second image should actually contain Philae, post-bounce, but the pixels are 1.3 meters across, so it’s hard to say. For what it’s worth (probably not much), here’s a guess at its location.

Rosetta regained contact with Philae at about 11:23 in the evening, local time (10:23 UTC, Earth Received Time). At first, the signal was wobbly but it stabillized in only a few minutes. Science data, stored onboard Philae from activities performed while it had been out of contact with Rosetta, streamed down to Earth via the orbiter. Housekeeping data came first, followed by COSAC science data. On Twitter, the SD2 drill team confirmed that their drill extended its entire distance out and then in again — a hopeful sign — though there is no way of knowing until results are analyzed whether it actually managed to reach the surface and grab a sample.

With all the science data off the lander, Rosetta autonomously sent Philae a command sequence to move. After several days of agonizing, the team had finally decided upon the movement action with the highest probability of success. They commanded the lander legs to lift the body by 4 centimeters, hopefully raising it a bit farther above the horizon, and then rotating the lander body 35 degrees to place the largest solar panel in a position where it could hopefully receive the most sunlight.

Telemetry confirmed that the lander moved as it had been commanded to do. There was no way of knowing whether the motion of the solar panel would increase available power, because by this time it was local night, with sunrise expected at around 6:00 UTC. But following the two commanded motions, Stefan Ulamec proclaimed the battery to be “good” — I was not quite sure what this meant, only that he seemed pleased by the amount of power remaining.

Still, there wasn’t much left. From our position behind the glass, Steven, Chris and I watched the engineers as they, in turn, watched a set of graphs on their screens — graphs that were declining steadily. Shortly after the motion was commanded, the main bus voltage plunged. We were told that it needed a minimum 21.7 volts to function, and after that, the end would be fast. My eyes misted, but I kept thinking of Huygens, 10 years ago. Against all odds, Huygens had survived for hours after the landing, long after Cassini had passed over its horizon, and after Saturn set beyond the Earth radio antennae that had been watching, just in case it survived landing. It had always troubled me that we hadn’t watched Huygens to the end. For Philae, we could stand watch.

And yet, Philae was untroubled by its distressingly low power state. It carried on executing a series of science operations from its new position. The downlink signal remained strong. It acquired and returned ROLIS images from its new orientation. It began performing a third CONSERT ranging experiment. CONSERT is intended for ranging through the comet, so doesn’t ordinarily get used when the orbiter is overhead, but its high-precision radar ranging would be useful for pinpointing Philae’s uncertain landing location; a third complete session would complete a triangulation.

The link stayed strong for a while, and instruments continued to acquire and return data. But, inevitably, the end came. Around 1:30 in the morning local time (00:30 UT), Daniel told us that the lander had switched to standby mode due to low power. All instruments were shut down. Ulamec came in and told us that the lander had gone into a mode where its voltage dipped and it shut down and then climbed briefly and it booted and sent one data packet every few minutes. It wouldn’t be long. But he was smiling, and in fact during this time there was frequent laughter inside the mission control center — Chris and I figured it was either gallows humor or just plain surprise that the lander was still going.

Ulamec came in again and said it had been a few minutes since the last packet — there might be one or two more, but that was probably it. But he was smiling. “We are happy. We even can watch it falling asleep, which is a little bit sad, but it can give us data that we want to have.” And he was thrilled that the CONSERT ranging pass had run to completion.

At 1:44 local (00:44 UT), Elsa Montagnon came in and told us “the link has broken. It is not far from the time we expected it to break. Rosetta’s radio receiver for Philae is, at the moment, always on. So it will be listening.” It was theoretically possible that the new solar panel position could even allow Philae to wake tomorrow after sunrise, though nobody really seemed to expect that to happen. If the solar power situation has improved, it will probably take several days of charging to achieve wakeup. So Rosetta will watch. But watching won’t prevent Rosetta from doing its science mission.

"We are privileged," Montagnon said a little bit later, "to have seen Philae going to sleep ‘live.’"

I and Steven and Chris were tweeting all this, and Tweetdeck on my computer looked like a slot machine, the way notifications and retweets were spinning by. The entire world was watching through us, to Philae, to keep it company as it passed into slumber. I showed this to Elsa Montagnon, and she was surprised and touched. The other engineers in mission control center also seemed surprised to hear how many people were following along.

As I tweeted my last picture, the engineers began shutting down the screens. It seemed a fitting way to end the evening. Lights out.

It’s been quite a week. Philae had a rough landing, but a successful one, and managed to operate all of its science instruments. Although there were problems, I am confident that the data returned from this tiny mission will effect a major change in our understanding of comets. But we’ll have to be patient. Good science takes time. Meanwhile, Rosetta is still fully functional and has more than a year ahead of it at least, to watch as the comet goes through perihelion next summer. And who knows? As the comet approaches the sun and its seasons shift, we may yet hear from Philae again.

And now for some acknowledgments. Thanks to Daniel Scuka for the invitation to ESA as social media, and to the other folks on the ESA web team including Emily Baldwin and Claudia Mignone, for their help, hard work, support, and at the end, amazing access to the final hours of our watch over Philae. Thanks, too, to ESA more generally, for stepping up their public outreach efforts on Rosetta and Philae; I don’t know who deserves all the credit for that, but some at least goes to Mark McCaughrean, Fred Jansen, and Matt Taylor on Rosetta in Europe, and Claudia Alexander in the U.S. They can tell me who else I should thank! Thanks to all the Philae instrument teams who are keeping us informed with science updates on Twitter, in particular MUPUS, who is tweeting out science results from their experiment even as I write this blog entry!

I also need to thank my peers who were with me in the ESA press room. Space journalists are, first and foremost, space enthusiasts. Sure, there is competition among us to get the best stories. But during confusing and unfolding events like this one, I find space journalists to be open and cooperative, working together to make sure we all have the right, best stories. The writers and reporters huddled around the table in Darmstadt freely shared juicy tidbits of information with each other, collaborating to get more, better, more accurate information out to as wide an audience as possible. Jonathan Amos, Stuart Clark, Eric Hand, Chris Lintott, Ivan Semeniuk, Paul Sutherland, and Steven Young — without their generosity, I wouldn’t have had nearly as much information to share with you, and more of the stuff that I’d told you would’ve been wrong.

And a HUGE thank you to Planetary Society members, whose generous financial support made the trip possible.

And that’s it for me. Fittingly, my battery is dying on my laptop as I descend at the end of my flight to Los Angeles. Thanks for sticking with me for this adventure, and stay tuned for further news from Churyumov-Gerasimenko, which I’ll be posting on

See other posts from November 2014


Or read more blog entries about: Rosetta and Philae, mission status


R. Scott Russell: 11/15/2014 06:12 CST

...and yet the journey will continue. Thanks to all involved with this extraordinary project as well as the many in-depth updates. Worlds without end.

RakeYohn: 11/15/2014 07:02 CST

Really great job with the coverage of this event this week. It seems to me that good, non-dumbed down science news has really been lacking in the mainstream media, so it was refreshing to see you on the BBC (even though I'm here in Philly) presenting a clear and correct update about what was going on and what was important. Twitter coverage was spot-on as well. Thank you for giving me a front row seat... - Rake

Marco: 11/15/2014 09:35 CST

Thank you very much Emily for your wonderful work in this amazing week. I followed everything in Twitter and it was really exciting. Greetings from Brazil ;)

Linda: 11/15/2014 11:56 CST

I was out of town at a place with very limited internet access. Watching the live stream was out of the question but I could follow your invaluable tweets. Thank you so much for bringing Philae's odyssey to us via Twitter and your comprehensive blog. A great investment of member dollars in my view. Now you've been "discovered" by the BBC your fame will surely grow - as it should.

David: 11/16/2014 03:03 CST

I agree with previous commenters: you were a super news wire. And to see you that focused live on the BBC after having travelled by air in the direction of jetlag and then been up for something like 48hrs..well. I'd have trouble remembering the color of oranges. Nice to hear space journalists cooperate like that, and fantastic that Philae managed to transmit the SD2 and oven data + Ptolemy coma sampling data + ranging and further ROLIS imagery and then go to sleep during the last contact window. Much better than going to sleep alone in the dark two hours prior to that window (and sitting on said science data probably forever). So a fitting end even if this lander doesn't perform a 'Phoenix' either. (And if it does resurrect then thoughts on that APXS hatch would be interesting)

Olaf : 11/16/2014 08:45 CST

I want to add my thank you for the amazing job you and your fellow twitterers did! Also, you seem to have gained the superpower of bringing down this website whenever you tweet a link to it.

Bob Ware: 11/16/2014 02:55 CST

Thank you Emily for not leaving prematurely. Thank you to ESA for giving you additional assistance in your coverage since you did not leave them when all looked as if the entire story had been told. That is true professionalism! The Planetary Society has a real gem on the staff! I'm glad you are here! Well done Emily and ESA! That's a great showing of team work!

Rob: 11/16/2014 07:00 CST

Thank you Emily for your great reporting being scientifically accurate, interesting, and heartwarming about the little lander that could.

Paul McCarthy: 11/16/2014 11:32 CST

Can you ascertain through all your new contacts, Emily, whether the drill did, in fact, OBTAIN A SAMPLE? It fully extended, fully retracted, delivered whatever it had, and COSAC and PTOLEMY operated and reported their data. Wonderful! But last report is that it's not certain that the drill actually reached anything and therefore had a sample! Since these two experiments would certainly deliver tremendous results, including chirality of organics, and isotopic data, and could possibly deliver amazing results, the suspense is killing me. Although investigators won't release experimental outcomes for some time (we can just about live with that), ESA reports they were immediately checking the data which will clearly indicate sample (or not). They must know the answer ALREADY BY NOW! What is it? Simple Yes/No -- that's not gonna wreck their careers! Please report Emily; Please report ESA!

sssalvi: 11/17/2014 12:01 CST

Thanks Emily for the great coverage. We love Philae and hope its batteries will survive upto perihelion for a good recharge and retention.

AlainR : 11/17/2014 02:59 CST

Let us send Bruce Willis on a rescue mission.

CosmosQuest: 12/08/2014 11:21 CST

This is a test of the comments feature to see if it is functional. 12/08/2014 12:22pm

Leave a Comment:

You must be logged in to submit a comment. Log in now.
Facebook Twitter Email RSS AddThis

Blog Search

Planetary Defense

An asteroid or comet headed for Earth is the only large-scale natural disaster we can prevent. Working together to fund our Shoemaker NEO Grants for astronomers, we can help save the world.


Featured Images

LightSail 2 and Prox-1
Bill Nye at LightSail 2 pre-ship review
LightSail 2 pre-ship review team photo
Swirling maelstrom
More Images

Featured Video

Class 9: Saturn, Uranus, and Neptune

Watch Now

Space in Images

Pretty pictures and
awe-inspiring science.

See More

Join The Planetary Society

Let’s explore the cosmos together!

Become a Member

Connect With Us

Facebook, Twitter, YouTube and more…
Continue the conversation with our online community!