Help Shape the Future of Space Exploration

Join The Planetary Society Now  arrow.png

Join our eNewsletter for updates & action alerts

    Please leave this field empty

Headshot of Emily Lakdawalla

How did they make the nuclear power source for the Curiosity rover?

Posted by Emily Lakdawalla

28-11-2011 15:07 CST

Topics: explaining technology, Curiosity (Mars Science Laboratory)

Maybe it's because I was a kid during the Cold War; I always assume that information about anything nuclear only comes out on that "need-to-know basis." So it was a nice surprise to be pointed to this informative video about how it was built. It's from the Idaho National Laboratories, which assembled and tested Curiosity's radioisotope power source before shipping it to Florida for installation. (Even funnier for this Cold War kid, the person who noticed and posted the video about American nuclear technology is from the Czech Republic! How times have changed!)

The video is narrated by Steve Johnson, director of the Space Nuclear Systems and Technology Division (how cool a job title is that?), and it describes how the nuclear battery was built, beginning with hot little plutonium-filled iridium capsules. The initial steps are done inside glove boxes (some of them with engineers manipulating robotic hands while looking through 30-centimeter-thick "water windows"). But once the thing is inside its casing, the engineers need no extraordinary protection from it -- they are working in polo shirts!

Opening the cask on Curiosity's MMRTG

NASA / Frankie Martin

Opening the cask on Curiosity's MMRTG
In the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida, a Department of Energy contractor employee guides the external and internal protective layers of the shipping cask as they are lifted from around the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission. The MMRTG no longer needs supplemental cooling since any excess heat generated can dissipate into the air in the high bay. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges.
See other posts from November 2011


Or read more blog entries about: explaining technology, Curiosity (Mars Science Laboratory)


Leave a Comment:

You must be logged in to submit a comment. Log in now.
Facebook Twitter Email RSS AddThis

Blog Search

Planetary Defense

An asteroid or comet headed for Earth is the only large-scale natural disaster we can prevent. Working together to fund our Shoemaker NEO Grants for astronomers, we can help save the world.


Featured Images

LightSail 2 and Prox-1
Bill Nye at LightSail 2 pre-ship review
LightSail 2 pre-ship review team photo
Swirling maelstrom
More Images

Featured Video

Class 9: Saturn, Uranus, and Neptune

Watch Now

Space in Images

Pretty pictures and
awe-inspiring science.

See More

Join The Planetary Society

Let’s explore the cosmos together!

Become a Member

Connect With Us

Facebook, Twitter, YouTube and more…
Continue the conversation with our online community!