Help Shape the Future of Space Exploration

Join The Planetary Society Now  arrow.png

Join our eNewsletter for updates & action alerts

    Please leave this field empty
Blogs

Headshot of Emily Lakdawalla

2008 TC3: One year later (a 365 Days of Astronomy podcast)

Posted by Emily Lakdawalla

05-10-2009 17:53 CDT

Topics:

Tomorrow it'll be one year exactly since the first time ever an astronomer on Earth discovered an object that had a 100% certainty of hitting the planet. Fortunately, the object named 8TA9D69, then renamed 2008 TC3, turned out to be small enough not to present any real hazard to anybody or anything on the ground. Instead, it became a useful example of how ready the international community of amateur and professional astronomers is to respond to an imminent threat with rapid follow-up observations -- and how un-ready we are as a planet to actually do anything to mitigate such a threat. Later, small pieces of TC3 were actually recovered on the ground in the Nubian desert. I have recorded a podcast for 365 Days of Astronomy on this topic; the transcript is below, or visit the 365 Days of Astronomy podcast site to download the recording.

There was a special session at the Division of Planetary Sciences meeting on 2008 TC3 today (called "From the Heavens to the Earth: The 2008 TC3 / Almahata Sitta Ureilite Fall"), with presentations on the discovery and observations of 2008 TC3 in space, the discovery of meteorites on the ground, and detailed analysis of those meteorites. There was no Earth-shakingly new science in any of the abstracts or the associated press release. They did note that the asteroid is "among the most cooked of all known meteorites" yet it still contains "polycyclic aromatic hyrdrocarbons in high abundances" and "amazingly...some amino acids have survived." I think the coolest thing released today were these two videos. The first represents actual telescopic images of 2008 TC3. The video is sped up of course, but even accounting for the fact that it's a time-lapse video I get a real sense of how incredibly speedily 2008 TC3 must have been moving across the sky from the incredible smear and rate of motion of the star trails.

Video by Marek Kozubal and Ron Dantowitz of Clay Center Observatory in Brookline, Massachusetts.
steroid 2008 TC3 in the hours before impact as seen in telescopic observations tracking the asteroid. This video covers about half an hour of observations and includes 428 frames.

ou hopefully noticed in the video how 2008 TC3 seems to be twinkling. That's not the usual twinkling of a star in the atmosphere. It's much stronger than that, and is real brightness variations caused by the rotation of the asteroid, which must be decidedly non-spherical. Today's press release says it "was shaped like a loaf of walnut-raisin bread," though why on Earth they were so specific about the type of bread escapes me. (Why not ciabatta bread? What if I'm allergic to nuts?) Anyway, the point is that the asteroid was shaped kind of like a flat pebble, and its tumbling rotation brought different-shaped faces into sunlight at different times, making its brightness vary as seen through a telescope. The press release wasn't specific about how P. Scheirich of Ondrejov Observatory, who is credited with this video, developed the shape model, but presumably it's some kind of inversion of the actual data on how the asteroid's brightness varied with time (also known as the asteroid's "light curve").
Animation by P. Scheirich (Ondrejov Observatory).
umbling asteroid 2008 TC3 as it would have appeared on approach to Earth on October 6, 2008. The motion has been accelerated: the full video covers a period of 12 minutes.

ater this year there is going to be a workshop in Sudan on the asteroid and its associated meteorites, followed by a field trip to search for more. I wish I could go, but I can't!

Here's the transcript of my podcast.


Hi, I'm Emily Lakdawalla, and I write for The Planetary Society's website at planetary dot org slash blog. Today I'm remembering the impact of two thousand eight TC3, an asteroid that crashed into Earth a year ago today.

Both amateur and professional astronomers discover new near-Earth asteroids practically every day. And it's also pretty common for people standing on the ground to see a fireball streaking through the sky as a small asteroid burns up in the atmosphere. But until last year, no one had ever discovered a near-Earth asteroid that was going to hit Earth with 100 percent certainty. TC3 was the first. And it all happened really fast.

Asteroid 2008 TC3 discovery images

NASA / Catalina Sky Survey

Asteroid 2008 TC3 discovery images
At 06:38 UTC on October 6, astronomers at the Catalina Sky Survey discovered an object provisionally called 8TA9D69 that appeared to be on a collision course with Earth.
On October 6, two thousand and eight, astronomers at the University of Arizona were doing routine sky surveys to look for near-Earth asteroids. It was nighttime in Arizona, of course, but in order to tell this story without hopeless confusion I'll have to use Universal Time.

So it was almost oh seven hundred universal time when the Arizona astronomers detected something moving against the background of known stars. Some quick computer work revealed that the object was new. But the computer also spat out an orbital path for the object that was a huge surprise: the predicted path intersected the path of Earth. The new object was on a collision course. The University of Arizona team submitted their observation to the Minor Planet Center, a clearinghouse for orbital data on the thousands upon thousands of tiny rocks that wander around the solar system. A little later, two more Arizona observatories spotted the object, and all of them arrived at the stunning conclusion that it was going to hit Earth.

Soon the rotation of Earth carried the new object out of view from Arizona and California; its position was now over the vast Pacific ocean. No one in Hawaii seems to have spotted it that night. More hours passed. The rotation of Earth finally brought sunset to Australia. In Moorook, near Adelaide in southern Australia, a remotely operated Global Rent-A-Scope instrument picked up the object too. With the Australian observation in hand, the Minor Planet Center finally had a long enough observational arc to issue a Minor Planet Electronic Circular. This was at about fifteen hundred hours Universal Time, eight hours after the initial discovery. The Minor Planet Center named the body two thousand eight TC3 and advised the astronomical community that, quote, "The nominal orbit given above has two thousand eight TC3 coming to within one earth radius around Oct. 7. The absolute magnitude indicates that the object will not survive passage through the atmosphere. Steve Chesley of the Jet Propulsion Laboratory reports that atmospheric entry will occur over northern Sudan." End of quote. The impact was predicted to occur less than thirteen hours after the circular was issued.

TC3 was so close and so dim that astronomers knew it was small, no more than a few meters across and maybe 80 tons in mass. This was a relief; such a small object would probably burn up and pose no risk to anything on the ground, especially since it was predicted to hit Earth in a remote and relatively unpopulated area of the Nubian desert. But this was the first time ever that an object had been seen before it was to hit Earth, and astronomers around the world scrambled to their telescopes to observe it.

They had to hurry; not only was the impact predicted to happen in less than thirteen hours, but TC3 would actually pass into Earth's shadow an hour before it hit. The discovery was too late for anyone in the Americas to spot it; now it was up to Asians, Europeans, and Africans.

I think most astronomers racing to their telescopes on the night of October six and seven did so mostly for the sheer thrill of tracking and following a heavenly body that was going to crash into Earth. But the observations had a more important purpose: to refine the orbit of the object, which would, in turn, improve astronomers' predictions of where it'd hit. Over the next eleven hours, twenty-four Minor Planet Electronic Circulars were issued with further details, pinning down TC3's flight path with high precision. Some of the observers were professionals, but the majority of the observations were done by amateurs, people who might be businessmen or bankers during the day but who harbored a passion for stargazing at night.

Astronomers weren't only gathering positional information. They were also racing to study TC3's color. Asteroids in space are classified according to the different ways they reflect and emit light. Using the science of spectroscopy, careful measurement of their brightness at different wavelengths of light gives scientists clues about an asteroid's composition, whether it's rocky or metallic, old and weathered or young and freshly broken. Professional astronomers at Armagh [ar-MAH] observatory in Ireland scrambled to spot TC3 and managed to record its spectra. Shortly later, the William Herschel telescope in the Canary Islands managed the same feat.

TC3 was so close to Earth that the different observing angles of different observers on different parts of the globe made its position appear to shift against background stars due to parallax. Parallax allowed the Minor Planet Center and the professional asteroid watchers at the Jet Propulsion Laboratory, or JPL, to predict its orbit with much greater precision than usual. The initial impact prediction was formally confirmed by JPL scientist Paul Chodas [CHO-duss] just an hour before its predicted impact time, oh two forty-six UTC.

Astronomers in Spain were the last to record an image. In fact, they captured a movie that showed TC3 winking out as it crossed into Earth's shadow, hiding it from view for its final hour of existence. With that, time had run out to observe the asteroid.

As TC3 entered the atmosphere, it began to compress the air in front of it. Do you remember the ideal gas law from high school chemistry? Pressure is proportional to temperature -- so if you jack up the pressure, so goes the temperature. Pretty soon, the incoming asteroid made the air so hot that it incandesced, glowing in visible light. TC3 had started out as a dim dark rock, but now it was a brilliant fireball.

One resourceful astronomy enthusiast, an aviation meteorologist at the Dutch National Weather Service, called an official at the Amsterdam airport and alerted him about the incoming asteroid. He radioed crews of planes in the air over northeastern Africa and told them to look out for the fireball. Amazingly, the alert worked! A KLM airliner that was about fourteen hundred kilometers to the southwest of the predicted atmospheric entry point observed a short flash just before the expected impact time.

Detection of the 2008 TC3 impact by infrasound

Peter Brown, University of Western Ontario

Detection of the 2008 TC3 impact by infrasound
An infrasound station (intended for the detection of seismic events) in Kenya recorded the blast associated with the atmospheric entry of asteroid 2008 TC3 over Sudan.
Another detection came not from the flash but from the boom. A seismologist from the University of Western Ontario in Canada examined records from an infrasonic array, a set of remotely operated devices designed to listen for earthquakes. He found that he'd detected a one to two-kiloton blast just before the predicted impact time.

And that was it, for a while. TC3 had come in, excited the astronomical community, and then vanished.

But it turns out that wasn't the whole story. The next morning, on October 7, the Muslim faithful of the Nubian desert emerged from morning prayers to see a sky filled with twisted, white, smoky streaks. Faced with this strange phenomenon, the Sudanese villagers did what any citizens of the twenty-first century would do -- they took photos of the sky with their cell phones and shared them with their friends and relations.

A few months later, Peter Jenniskens, a meteor astronomer at NASA's Ames Research Center, contacted Muawia Shaddad, a physicist at the University of Khartoum. Together the two men organized an expedition to the Nubian desert to search for any fragments of the asteroid that might have survived the fireball.

In December, Jenniskens, Shaddad, and 45 students and staff set off from Station 6 of the local railway line along the flight trajectory of TC3. Quickly one of the students, Mohammed Alameen, found a black odd-looking rock that looked like a meteorite. It proved to be the first fragment of 2008 TC3, now named "Almahata Sitta," Arabic for "Station 6." Over several weeks, the expedition collected nearly 280 pieces of the asteroid strewn over 29 kilometers of desert. Altogether the meteorites weighed less than 5 kilograms -- all that remained of the 80-ton asteroid.

It was a remarkable find: For the first time ever a celestial body that was observed in space was subsequently collected on the ground on Earth and made available for laboratory study. Spectral measurements were compared with the direct analysis of the meteorite shards. The two studies agreed closely, reassuring astronomers that spectral analysis really is a reliable way to understand the composition of small asteroids. The close correspondence suggested that small bodies like TC3 aren't heavily coated with dust, which can distort spectroscopic measurements of larger objects.

All in all, I think the episode of 2008 TC3 has proven that the world's astronomical community, made up of amateurs and professionals both, is prepared to respond when an object on a collision course is detected. Within just a few hours of its discovery, the digitally connected world knew exactly where and when TC3 would hit, and also that it posed no threat. It was a wonderful simulation of the first part of the call to arms when a truly threatening object is detected.

But now we have to ask ourselves: what would have happened if the object was much bigger than a few meters across? One reassuring fact is that a bigger object would most likely have been spotted sooner, because it would have been brighter. Still, though, the warning time for a tens-of-meter-diameter object could only be measured in days. If we'd had three days' warning of a dangerous impactor heading for Sudan, what could the world have done? The remote location of the impact would have been fortunate for humanity in general, but disastrous for the few people who lived out in that remoteness. Could the developed world have done anything to prevent yet another humanitarian disaster from befalling the Sudanese?

Here at The Planetary Society, we're seeking answers to these questions. We've joined the Association of Space Explorers and the B612 Foundation in their efforts to develop an international framework for planetary defense. When the time is right, we'll push for action on this issue from the United Nations' Committee on the Peaceful Uses of Outer Space. In the meantime, we're supporting amateur astronomers around the world with our Shoemaker Near Earth Object Grant program, which allows amateurs to buy equipment that helps them to make those all-important tracking and followup observations.

You can learn more about asteroid TC3 and The Planetary Society's work to reduce the risk we face from near-Earth objects on our website at planetary.org. I'll have lots of photos and links for you on my blog at planetary dot org slash blog. Thanks for listening!

 
See other posts from October 2009

 

Or read more blog entries about:

Comments:

Leave a Comment:

You must be logged in to submit a comment. Log in now.
Facebook Twitter Email RSS AddThis

Blog Search

Essential Advocacy

Our Advocacy Program provides each Society member a voice in the process.

Funding is critical. The more we have, the more effective we can be, translating into more missions, more science, and more exploration.

Donate

Featured Images

NGC 4100
The Flaming Star Nebula (IC 405)
LDN 604 and GGD 30
Schiaparelli backshell and parachute landing location from HiRISE in color
More Images

Featured Video

The Planetary Post - Carl Sagan's Pale Blue Dot

Watch Now

Space in Images

Pretty pictures and
awe-inspiring science.

See More

Join The Planetary Society

Let’s explore the cosmos together!

Become a Member

Connect With Us

Facebook, Twitter, YouTube and more…
Continue the conversation with our online community!