Help Shape the Future of Space Exploration

Join The Planetary Society Now  arrow.png

Join our eNewsletter for updates & action alerts

    Please leave this field empty
Franck Marchis

Franck Marchis

Franck Marchis has been a Principal Investigator at the Carl Sagan Center of the SETI Institute since July 2007. He joined the institute for a full time position in June 2011 after having a joint appointment with the department of astronomy of the University of California at Berkeley.

Over the past 15 years, he has dedicated his research to the study of our solar system using mainly ground-based telescopes equipped with adaptive optics. The solar system is characterized by considerable diversity of its constituent bodies. Franck Marchis’ first involvement in the study of this diversity started in 1996 while working at the UNAM Astronomy Department in Mexico City. He made the first ground-based observations of the volcanoes on the jovian moon Io, using the first Adaptive Optics (AO) systems available on the European Southern Observatory (ESO) 3.6 m telescope at Chile’s La Silla Observatory. After a brief stay in London and four years in Chile at ESO, he completed in 2000 his PhD in a French university (Toulouse III) even if he has conducted his research in these three countries. His doctoral research described the application of adaptive optics to the study of the solar system.

He continued this explorative work at U. C. Berkeley where he had the opportunity to use the W.M. Keck 10 m telescope and its revolutionary Laser Guide Star AO system. In collaborations with astronomers of the Observatoire de Paris, he searched for, and studied moons around asteroids. In 2005, this team discovered the first triple asteroidal system composed of Sylvia, a 280-km size irregular asteroid, surrounded by two kilometer-size satellites named Romulus and Remus. The existence of multiple asteroid systems provides direct clues about the collisional past of the solar system and the formation of major planets. The direct measurement of the bulk density of an asteroid available when the moon’s orbit is well constrained give indications about the composition and distribution of material in the asteroid. In 2006, his group published in Nature the first density measurement of a Jupiter Trojan asteroid (617) Patroclus, which is similar to the density of comets and icy outer asteroids. This work implies that Trojan asteroids could be captured transneptunian objects due to the migration of the giant planets.

More recently Franck has been also involved in the definition of new generation of AOs for 8 -10 m class telescopes and future Extremely Large Telescopes. He has developed algorithms to process and enhance the quality of images, both astronomical and biological, using fluorescence microscopy. His currently involved in the development of the Gemini Planet Imager, an extreme AO system for the Gemini South telescope which will be capable of imaging and record spectra of exoplanets orbiting around nearby stars.

His research involves both undergraduate and graduate students. Marchis is eager about contributing to the diversity of our science community and educating a new generation of researchers.

You can learn more about Franck and his research in his contributions to the blog at The Cosmic Diary or by visiting his SETI webpage.

Latest Planetary Radio Appearance

Imaging Hot Young Jupiters

10/06/2015 | 28:50
Listen

Franck Marchis is on the team that has delivered an actual image of a young, hot world about 100 light years from Earth. We talk with him on the 20th anniversary of the first exoplanet discovery.

More Planetary Radio shows »

Latest Blog Posts

Let’s be careful about this “SETI” signal

Posted 2016/08/30 12:19 CDT | 10 comments

Several readers have contacted me recently about reports that a group of international astronomers have detected a strong signal coming from a distant star that could be a sign of a high-technology civilization. Here’s my reaction: it’s interesting, but it’s definitely not the sign of an alien civilization—at least not yet.

Proxima Centauri b: Have we just found Earth’s cousin right on our doorstep?

Posted 2016/08/24 12:01 CDT | 19 comments

What began as a tantalizing rumor has just become an astonishing fact. Today a group of thirty-one scientists announced the discovery of a terrestrial exoplanet orbiting Proxima Centauri. The discovery of this planet, Proxima Centauri b, is a huge breakthrough not just for astronomers but for all of us. Here’s why.

Asteroid Minerva finds its magical weapons in the sky

Posted 2013/12/26 11:48 CST | 0 comment

The International Astronomical Union has chosen the names Aegis and Gorgoneion for the two moons of the asteroid (93) Minerva. We decided to crowd-source the names, catching the attention of the public. Over the following year, I received a lot of emails with suggestions

Older blog posts »

Facebook Twitter Email RSS AddThis

Essential Advocacy

Our Advocacy Program provides each Society member a voice in the process.

Funding is critical. The more we have, the more effective we can be, translating into more missions, more science, and more exploration.

Donate

Featured Video

The Planetary Post - Carl Sagan's Pale Blue Dot

Watch Now

Space in Images

Pretty pictures and
awe-inspiring science.

See More

Join The Planetary Society

Let’s explore the cosmos together!

Become a Member

Connect With Us

Facebook, Twitter, YouTube and more…
Continue the conversation with our online community!