Help Shape the Future of Space Exploration

Join The Planetary Society Now  arrow.png

Join our eNewsletter for updates & action alerts

    Please leave this field empty

Headshot of Jim Bell

Virtual Exploration, Virtually Everywhere

Posted by Jim Bell

14-05-2012 10:45 CDT

Topics: explaining technology, future technology

Robotics is taking off in aviation as well, with a dizzying array of Unmanned Aerial Vehicles (UAVs) or drones now being used to let people remotely explore, survey, spy, and even attack. Among the most famous of the UAVs are the U.S. Air Force's Predator drones, many of which are being used today to conduct combat operations against targets in Afghanistan and Pakistan. Warfare has gone robotic; I can only imagine the telepresence sensations that military operators must feel to not only locate but to actually kill enemies from halfway around the planet.

Even the ancient practice of mining is being revolutionized through robotics, with remote operators telerobotically controlling driverless trucks, rockbreakers, drills, and loaders. In South America, Europe, Australia, China, and the U.S., telerobotics is fueling a growing segment of the global mining economy built around the modern automated mine, where accidents still cost time and money but not necessarily human lives.

One big difference between telerobotics in the ocean, air, or underground and telerobotics in space, however, has to do with what engineers call latency -- the time it takes the remote vehicle or system to respond to commands, and for the results of those responses to be communicated back to the teleoperators. In ocean or mine exploration, for example, typical latency can be essentially zero if the vehicle is linked to the operators through radio or fiber optics. In planetary exploration, latency ranges from seconds for vehicles in Earth orbit or on/near the Moon, to minutes to tens of minutes for vehicles operating at Venus or Mars, to nearly 9 hours when the New Horizons mission reaches Pluto in 2015, to even longer for our most distant space vehicles like Voyager. This makes real-time operations of robotic vehicles difficult or impossible for deep space destinations ("JPL to Spirit rover: Avoid that cliff!" ... "Spirit rover?" ... "Spirit rover???"), and has generally led to operations concepts typically based around time-stamped command lists radioed up to these deep space vehicles followed by daily to weekly response and reaction latencies. Occasionally, terrestrial telerobotics latencies can also be days to weeks; for example, for some AUVs that might only surface occasionally to radio their data and status back to remote controllers. Such long latencies make the often more desirably immersive experience of telepresence challenging, though as the symposium demonstrated, people are beginning to think about technologies and operational strategies that could help to work around some of those challenges.

In the end, I was simply stunned to learn from fellow symposium participants how many of these ROVs, robotic mine vehicles people are using here on Earth these days, how much oceanographic, geologic, biologic, and even archaeologic science and exploration they are enabling, and how important robotics is becoming to global defense and business. The teams of people operating terrestrial robots for science, defense, or resource exploration are the same kinds of teleoperators, engaged in similar kinds of telerobotics work, as those of us exploring space with Martian rovers or planetary orbiters. In that sense, these global (and interplanetary) communities can learn much from each other. Indeed, a main goal of the symposium was to share tools, experiences, and lessons learned that would enable collaborations between these different stakeholders. I can't wait to learn more.

This post was originally published at The Huffington Post and reprinted here with permission of the author.

See other posts from May 2012


Or read more blog entries about: explaining technology, future technology


Leave a Comment:

You must be logged in to submit a comment. Log in now.
Facebook Twitter Email RSS AddThis

Blog Search

Planetary Defense

An asteroid or comet headed for Earth is the only large-scale natural disaster we can prevent. Working together to fund our Shoemaker NEO Grants for astronomers, we can help save the world.


Featured Images

Jupiter from Juno at Perijove #4
Jupiter in approximate true color during Juno perijove 4
More Images

Featured Video

Class 9: Saturn, Uranus, and Neptune

Watch Now

Space in Images

Pretty pictures and
awe-inspiring science.

See More

Join The Planetary Society

Let’s explore the cosmos together!

Become a Member

Connect With Us

Facebook, Twitter, YouTube and more…
Continue the conversation with our online community!